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Abstract

In this paper, we first state covariant derivative formulas for multiply warped products and con-
sider the geodesic equations for these spaces. Then we state some basic facts about causality of
Lorentzian multiply products and study Cauchy surfaces and global hyperbolicity. Finally, we con-
sider null, time-like and space-like geodesic completeness of Lorentzian multiply products and
geodesic completeness of Riemannian multiply warped products. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

O’Neill and Bishop [7] introducedingly warped productsr simply warped products
to construct Riemannian manifolds with negative sectional curvature. Later, it was pointed
out that many exact solutions teinstein’s field equatiortan be expressed in terms of
Lorentzian warped productsy Beem et al. [4]. Moreover, Beem and Ehrlich [3] proved that
causality and completeness of warped products can be related to causality and completeness
of components of warped produc@urvatureformulas of singly warped products in terms
of curvatures of components of warped products were explored by O’Neill [13] and he
also examined@obertson—Walker, static, SchwarschalidKruskal space—timess warped
products. Also, warped products were considerdgiamannian submersiohy Besse [6]
and he obtained some results for special cases.

In the present work, we studyultiply warped productsr multiwarped productsBefore
we see a brief definition of multiply warped products, we describe the following type of
products. A Lorentzian warped produd¥( g) of the formM = (c,d) x , F with the
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metricg = —dt? @ b%gr is ageneralized Robertson-Walkepace—time, whereco <

¢ <d < ooandb: (c,d) — (0, 00) is a smooth function. Generalized Robertson—Walker
space-times are considered as model space—times in relativity theory (cf. [3,11,13,21]).
Especially, in [18] some results about stability, geodesic completeness and geodesic con-
nectedness of generalized Robertson—Walker space—times were stated. Furthermore, in [21]
necessary and sufficient conditions for a generalized Robertson—Walker space—time to have
positive Ricci curvature on non-space-like tangent vectors and some conditions for them
to be either Ricci-flat or Einstein are proven. Also, in [21] some results for a generalized
Robertson-Walker space—time to have non-negative sectional curvature on time-like plane
sections are established and some applications to singularity theorems are given and also
some results for certain types of warped products to have constant scalar curvature are
stated.

In generaldoubly warped productsan be considered as generalizations of singly warped
products. A doubly warped producd/ g) is a product manifold which is of the form
M =; B x ,F with the metricg = f?gp ® b?gr whereb: B — (0,00) and f: F —

(0, 0) are smooth maps. Beem and Powell [5] considered these products for Lorentzian
manifolds. Then Allison [1] considerezhusalityandglobal hyperbolicityof doubly warped
products. In [22], Cauchy surfaces in doubly warped products and global hyperbolicity
are considered. Then geodesic completeness of Lorentzian doubly warped products and
Riemannian doubly warped products are studied and necessary conditions are given for
generalized Robertson—Walker space—times with doubly warped product spacial parts to
be globally hyperbolic. Also &-decaying condition is used to establish some results about
geodesic incompleteness of Riemannian doubly warped products, in addition to those, some
results are stated about Killing and conformal vector fields of doubly warped products.

One can also generalize singly warped products to multiply warped products. Briefly,

a multiply warped productM, g) is a product manifold of the formMd = B x ;, F1 x

by F2 X -+ X p, Fy With the metricg = gp ® b2gr, ® bigr, ® --- ® b2 gF,,, where for

eachi € {1,...,m}, bi: B — (0, 00) is smooth and X;, gr,) is a pseudo-Riemannian
manifold. Covariant derivativesand curvatures of multiply warped products are given in

[2] for m = 2. In particular, wherB = (c, d) with the negative definite metrigg = —dt?,

the corresponding multiply warped produét= (c, d) X p, F1 X p, F2 X - - - X, Fpy With the
metricg = —dt? ® b2gp, ® bgr, @ - - - ® b2 gF,, is called a multiply warped space-time,
where for eachi € {1, ... ,m}, (F;, gr,) is a Riemannian manifold andoo < ¢ < d <

00. Geodesic equations and geodesic connectedness of multiply warped space—times were
studied by Flores and Sanchez [9] and they also noted that the class of multiply warped
space—times contains many well-known relativistic space—times.

There are various types of warped products in addition to the ones considered above
and some of these have proven useful in general relativity. Campbell [8] studied local
embeddings of pseudo-Riemannian manifolds in Ricci-flat pseudo-Riemannian manifolds.
His work was used to construct the local embedding in five-dimensional, Ricci-flat spaces
of four-dimensional space—times admitting a non-twisting, Killing vector field in [12]
and to show that general relativistic solutions can always be locally embedded in Ricci-flat
five-dimensional spaces in [17]. It can be easily observed that all these extensions are some
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mixed types of warped products. Also, in [15] some physically motivddedimensional
solutions studied by Wesson and Ponce de Leon were extendBdb) (dimensions and
again these extensions turn out to be various types of warped products.

In Section 3, we study theausalstructures of multiply warped products. Then we also
investigateCauchy surfacstructures andlobal hyperbolicityof multiply warped products
and obtain generalizations of singly warped products results (cf. [3]).

In Section 4, we consider geodesic completeness of Lorentzian and Riemannian doubly
warped products. We examimelll geodesic completenestLorentzian multiply warped
products {1, g) of the formM = (c,d) x p, F1 x --- x p, F,, With metricg = —dt? @
b2gp, @ -+ @ b2gr,, Where—co < ¢ < d < oo andB = {b1,..., by} by using
similar techniques in [16]. To do this we suppose tifat ¢r,) is a complete Riemannian
manifold for anyi € {1, ... , m} then we get relations between null geodesic completeness
of (M, g) and the divergence of lim, .+ [“°(f[b1, ... , bk](s)/v/h[b1, ... , bk](s)) ds and

lim,_, ;- flj)o( flb1, ..., bi](s)/vh[b1, ..., bi](s)) ds for somewg € (c,d) and anyk e
{1,...,m}and any subsdby, ... , b;} of B, where

k k
flbr.....b ) =[]k and hlb1,.... 5] =) b5+ b7 b7, bf.
i=1 i=1

Similarly, we also examingme-like geodesic completenaedq M, g) and we obtain rela-
tions between time-like geodesic completenesatfg) and the divergence of lim, .+ ft’”o
(flb1, ..., bK)(s) /N flb1, - .., bK)2(s) + h[bx, ... ,bk](s))ds  and im—a- [,
(fb1. ... . bK)(s) /v flb1. ... bk]2(s) + h[bu, ... , bi](s))ds for more somewg € (c, d)
and anyk € {1,...,m} and any subsdbs, ... , b;} of B. Finally, we consider space-like
geodesic completeness dff( ¢g) and obtain relations between space-like geodesic com-
pleteness/, g) and the divergence of lim, .+ [“°(f[b1. . .. , bkl (s)/v/hlb1. ... , bK](s))
ds and Iim,_>d7f;0(f[151, o bk () /V/h[b1, ..., bi](s))ds or unboundedness of
flb1, ..., b](s)/v/h[b1, ..., br](s) on (wo, d) or (c, wo) for somewg € (¢, d) and any
ke {1,...,m}andany subsdbs, ..., b} of B.

Moreover, we extend some results about geodesic completeness of Lorentzian multiply
warped products from [14], i.e., when a Lorentzian multiply warped prodMctg{) of
the formM = B x p, F1 x -+ X ,, F,y With metricg = gp @ b2gp, ® --- ® b2 gF, iS
null, time-like or space-like complete thef;( gr,) is a complete Riemannian manifold
foranyi € {1,...,m} and in this case,R, gg) is null, time-like or space-like complete,
respectively.

After considering geodesic completeness of Lorentzian multiply warped products we
turn our attention to Riemannian multiply warped produdfs ¢) of the formM = B x
b F1 X -+ X pp, Fyy With metricg = gp ® b2gp, @ - - - @ b2 gr,,. We proved that if B, gp)
and (;, gr,) are all complete Riemannian manifolds for ang {1, ..., m}, then (4, g)
is also complete and conversely, whek, () is complete thenRg, gg) and ;, gf;) are
complete forany € {1, ..., m}.
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2. Preliminaries

Thoughout this work any manifolsf is assumed to be connected, Hausdorff, paracom-
pact and smooth. A pseudo-Riemannian maniftfd ¢) is a smooth manifold with a metric
tensorg and a Lorentzian manifoldy, g) is a pseudo-Riemannian manifold with signature
(= + 4+, ..., ).

Let (M, g) be a Lorentzian manifold. A non-zero tangent veéigre T, (M) is said to be
time-like (respectively, space-like or null)¢f( X ,, X,) < O (respectivelyg(X,, X,) >0
org(X,, X,) =0).

A Lorentzian manifold {/, g) is calledtime-orientedby the vector fieldX, if X is
time-like at every point of\. A time-oriented Lorentzian manifoldM, g) is called a
space-time.

Let p,q € M. Thenp « q if there exists a smooth future directed time-like curve from
ptog andp < q if there exists a smooth future directed non-space-like curve from
to ¢g. The chronological futuré ™ (p) of p is the seti *(p) = {g € M|p < g} and the
chronological past ~(p) = {¢ € M|q < p}. The causal futurg ™ (p) of p is the set
J*(p) ={q € M|p < q} and the causal past (p) = {q € Mlq < p}.

Now, we briefly state some causality conditions in order of increasing strength (cf. [3,11]).
If a space—time N/, g) contains no closed time-like curves the¥ (g) is chronological.

A space—-time with no closed non-space-like curves is called causal. An op&hiset
space—time is called causally convex if no non-space-like curve intefgdcts: discon-
nected set. Givep € M, the space—timeM, g) is called strongly causal at if p has
arbitrarily small causally convex neighborhoods. A space—time is said to be a strongly
causal space—time if it is strongly causal at each point.

A space-time ¥, g) is stably causal if there is a fin€® neighborhood/(g) of g in
Lor (M) such that eaclg; € U(g) is causal. A continuous functiofi: M — R is a
global time function iff is strictly increasing along each future directed time-like curve.
A space—-time is stably causal if and only if it has a global time function. A strongly causal
space—time ¥/, g) is said to be globally hyperbolic if for each pair of poinisqg € M
the set/ T (p) N J~(g) is compact. Globally hyperbolic space-times may be characterized
by using Cauchy surfaces. A subsetMsfwhich every inextendible non-space-like curve
intersects exactly once is called a Cauchy surface. A space—time is globally hyperbolic if
and only if it has a Cauchy surface (cf. [10,11]). At this point we recall that in a globally
hyperbolic space-time any pair of causally related points may be joined by a non-space-like
geodesic segment of maximal length (cf. [19]).

Let (M, g) be a Lorentzian manifold. Givep, g € M, with p < g, define2, , as the
set of all future directed piecewise smooth non-space-like cyrvfs 1] — M from p to
q,i.e.,y(0) = pandy (1) = gq. TheLorentzian distancé: M x M — R U {oo} is defined
as follows: letp, ¢ € M then

(o if g ¢J%(p),
d(p.q) = {sup{Lg(V)lV €Qpg I qeIT(p)

whereL, (y) is theLorentzian arc lengtlof y.
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In arbitrary Lorentzian manifolds, a reverse triangle inequality holds. More explicitly,
if p <gq <rthend(p,q)+d(g,r) <d(p,r).In globally hyperbolic space-times, the
Lorentzian distance function is finite and continuous.

A smooth curvey: I — M in an arbitrary pseudo-Riemannian manifold is said to be
a pre-geodesic if it can be reparametrized so that the repametriziation is a geodesic. A
parametes for a pre-geodesig is called an affine parametenjif’(s) = 0.

A smooth curvey: (a,b) — M in an arbitrary pseudo-Riemannian manifold is inex-
tendible tor = b (respectively, ta = a) if the lim,_, ,- y (¢) (respectively, lim_, ,+y (1))
does not exist.

In a Riemannian (i.e., positive definite) manifold the Hopf-Rinow theorem (cf. [13])
states the equivalence of metric completeness and geodesic completeness.

The Lorentzian manifold¥, g) is time-like (respectively, null, space-like) complete if
all time-like (respectively, null, space-like) inextendible geodesics are complete (i.e., can
be defined on all oR). A non-space-like incomplete space—time is called a geodesically
singular space—time (cf. [10]).

Here, we briefly explain the topology of warped products.

Let (B, gg) and (F;, gr;) ber ands; dimensional pseudo-Riemannian manifolds, re-
spectively, wheré € {1,2,... ,m}.If F = F1 x F» x --- x F,,thenM = B x F is an
n-dimensional pseudo-Riemannian manifold wheee Y ;s; andn = r + 5.

Throughout this paper we use thatural product coordinate systeon the product
manifoldB x F. Let (p, g1, g2, - .. , gm) be a pointinM. Then there areoordinate charts
(U, x) and (V;, y;) on B and F;, respectively, whereé € {1,2,... ,m} such thatp € B
andg; € F;. Then we can define a coordinate chaw, ¢) on M such thatw is an open
subset inM contained inU x Vi x Vo x --- x V,, and(p, q1,92, ... ,9n) € W then
for all (u, vi,v2,...,vy) IN W, z(u,v) = (x(u), y1(v1)y2(v2), ..., ym(vm)), Wherer:

B x F — Bando;: Bx F — F; and alsoo: B x F — F are usual projection maps
wherei € {1, 2, ... ,m}. Clearly, the set of all}, z) defines an atlas oR x F.

Let¢: B — R € D(B) thenthe liftof¢ to B x Fis¢ = ¢ o € D(B x F), where
D(B) is the set of all smooth real-valued functions Bn

Moreover, one can defindts of vector fields as: leX € X (B) then the lift of X to
B x F is the vector field{ € X(B x F) such thatiz(X) = X anddo;(X) = 0 for any
i €{1,2,...,m}. Similarly, letV; € X(F;) then the lift of V; to B x F is the vector field
V; € X(B x F) such thadz(V;) = 0 anddo;(V;) = V; and alsado;(V;) = 0 for any
jel{l,2, ...,m}—{i}. We will denote the set of all lifts of all vector fields 8fby L(B)
and the set of all lifts of all vector fields df; by L(F;) foranyi € {1, 2, ..., m}. Now we
are ready to define multiply warped products.

Definition 2.1. Let (B, gp) and (;, gr;) be pseudo-Riemannian manifolds and also let
bi: B — (0, 00) be smooth functions for aniy € {1, 2, ..., m}. The multiply warped
product is the product manifol x F1 x Fz x --- x F, furnished with the metric tensor
g = gp ®bigp, ®b3gr, ® - ® b2 gy, defined by

g =7"(gp) ® (bi om)%05(gr) ® -~ @ (b 0 7)%0,5(gF,)- 1)
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The functionsh;: B — (0, co) are called warping functions for anye {1, 2, ... , m}.

If m = 1, then we obtain a singly warped product. If &ll= 1, then we have a product
manifold. If (B, gg) and (;, gf,) are all Riemannian manifolds, theB & ,, F1 X p, F2 X
o Xy Finy 88 ® b2gr, @ bogr, ® - - ® b2 gr,) is also a Riemannian manifold. We call
(B X py F1 X pyF2 X -+ X p, F, g8 ® b2gr, ® b3gr, ® - - - ® b2 gr,,) Lorentzian doubly
warped product if £;, gr,) are all Riemannian and eithéB, gg) is Lorentzian or else
(B, gp) is a one-dimensional manifold withreegative definitenetric —dt2.

In [2], metric components, covariant derivatives, Riemannian curvature, Ricci curvature
andscalar curvature®f multiply warped products are studied far= 2. We will state the
covariant derivative formulas for multiply warped products. Note that the these formulas
are proven in [2] form = 2.

Proposition 2.2. Let M = B x »,F1 x --- x p, F,, be a pseudo-Riemannian multiply
warped product with metrig = gg @ b2gp, @ --- ® b2 g, also letX,Y e L(B) and
V e L(F;), W € L(F;). Then

1. VxY = (V8y),

2. VxV =VyX = %@V’
0 if i# ),
3. va = /F\/
(V)W) — (g(V,W)/b;)gradg(b;) if i=j.

By using the above result, it is easy to obtain the following generalizations of results [13]
for singly warped products.

Proposition 2.3. Let M = B x », F1 x --- x p, F,;, be a pseudo-Riemannian multiply
warped product with metrig = gg @ b2gr, @ - - - ® b2 g, . Then
1. The leavesB x {¢} and the fibergp} x F of the multiply warped product are totally
umbilic.
2. The leafB x {q} is totally geodesic, and the fibgp} x F is totally geodesic if
gradg (b;)|, = 0foranyi e {1,2,... ,m}.

Now, we will state the geodesic equations for multiply warped products. The version
of this fact for singly warped products and doubly warped products are well known (cf.
[13,21)).

Proposition 2.4. Let M = B x p, F1 x --- x p, F;y be a pseudo-Riemannian multiply

m

warped product with metrig = gp @bfgpl ®H--- eabigFm.Also lety = («, B1, ..., Bm)

be a curve in M defined on some intervatc R. Theny = (¢, 1, ... , B) iS @ geodesic
in M if and only if for anyr € I,

m

1 o = (bi o a)gr (B, B)) grads (bi).

i=1
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2 d
2. B’ = (b‘oa)%ﬂ{,for anyie{l2 ... ,m).

Remark 2.5. LetM = B x , F1 X ... x 3, F, be a pseudo-Riemannian multiply warped

product with metricg = gp @ b%gpl ®-- ®b2gr,. Alsolety = (o, B1,...,Bn) be a

curve in M defined on some intervAlC R. If y = (¢, B1, ..., Bn) IS @ geodesic in M,

then

1. Bi: 1 — F; is a pre-geodesic iif; for anyi € {1, 2, ... ,m}.

2. (bioa)gr (B, B)) =ci foranyi e {1,2,... ,m}.

3. ais a constant if and only if there exists a paing I such tha’(s) = 0andc¢; = Ofor
anyi € {1,2,... ,m}ora’(s) = 0 and grag (b;)((s)) = Oforanyi € {1, ... ,m}.

4. B; is constant for somee {1, ... ,m} if and only if¢c; = 0.

3. Causality of multiply warped products

In this section, we briefly recatlausal structures of multiply warped produetisd state
some results abowflobal hyperbolicityof multiply warped products. All the results can
be proven by using the similar arguments to prove the analogues of these results for singly
warped products (cf. [3]).

3.1. Causality

In this section, we will generalize some basic facts about causality of Lorentzian singly

warped products to Lorentzian multiply warped products (cf. [3]).

LetM = B x j, F1 x - -- X p, Fyy be a Lorentzian multiply warped product with metric

g =g ®bigr @ ®b2gp,. Then we have,

1. If (p,q) € M thendn, ). T(p.q)(B x F) — T,(B) maps non-space-like vectors
of T(p,q)(B x F) to non-space-like vectors df,(B) andn: B x F — B maps
non-space-like curves d&f x F to non-space-like curves @&.

2. Themapr: B x F — B is length non-decreasing on non-space-like curveB gf F.

3. (M, g) is time-orientable if and only i€B, gp) is time-orientable (if- > 2) or (B, gp)
is a one-dimensional manifold with a negative definite metric.

4. If ¢ is a point inF then each leave ~1(¢) = B x {g} has the same chronology and
causality agB, gp).

Suppose thatp1, q1), (p2, q2), (p1, ¢), and(pz, ¢) are points inM then

1. if (p1, q1) < (p2, q2) thenpy K pa,

2. if (p1,q1) < (p2, q2) thenps < po,

3. if p1 < p2then(p, ) < (p2, q),

4. if p1 < p2then(p1, q) < (p2, 9).

By using the similar arguments in [3], we get the following.

Theorem3.1. LetM = (¢, d) xp, F1 % - - X}, F,, be a Lorentzian multiply warped product
with metricg = —dt? @ bfgpl ®-- - ®b2gr,, Where—co < ¢ < d < oo. Then(M, g)
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is stably causal and consequently strongly causal, distinguishing, causal and chronolo-
gical.

Theorem 3.2. LetM = B x p, F1 x - - - X p,, Fy,, be a Lorentzian multiply warped product

with metricg = gp ® b2gp, @ -~ ® b2 gr,,. Then

1. (M, g) is causal (respectively, chronological) if and only if the space—tiBegp) is
causal (respectively, chronological)

2. (M, g) is strongly causal (respectively, stably causal) if and only if the space—time
(B, gp) is strongly causal (respectively, stably causal)

Note that if B is diffeomorphic taS?, thenS! x ,, F1 x - x 5, F, is never chronolo-
gical.

3.2. Global hyperbolicity

Inthis section, we will generalize some basic facts about global hyperbolicity of Lorentzian
singly warped product to Lorentzian multiply warped products (cf. [3]).

Theorem 3.3. LetM = B x , F1 x --- X, Fy,, be a Lorentzian multiply warped product
with metricg = g ® b2gr, ® - -- D b2 g, Then(M, g) is globally hyperbolic if and only
if

1. (B, gp) is globally hyperbolic and

2. (F;, gr,) iscomplete forany € {1,... , m}.

Corollary 3.4. Let M = (c,d) x p,F1 x -+ x p, F,, is a Lorentzian multiply warped
product with metricg = —d® @ b2gr, @ --- ® b2 g, , Where—oo < ¢ < d < oo. Then
(M, g) is globally hyperbolic if and only itF;, gr,) is complete for any € {1, ... , m}.

Now, we will give the following result about Cauchy surfaces in multiply warped
products.

Theorem 3.5. LetM = B x p, F1 x - - - X 3, Fy,, b€ a Lorentzian multiply warped product
with metricg = g ®b2gp, @ - - ®b2 g, . If (Fi, gr,) is complete forany e {1, ... ,m},
then
1. if B = (c,d) for —oo < ¢ < d < oo is given the negative definite metriat® then
{p} x F is a Cauchy surface d¢iM, g) for everyp € B,
2. if (B, gp) is a globally hyperbolic space—time with a Cauchy surfgeghenSz x F
is a Cauchy surface qiV, g).

4. Completeness of multiply warped products

In this section, we obtain some results about geodesic completeness of Lorentzian and
Riemannian warped products. Analogues of these results for both Lorentzian and Rieman-
nian singly and doubly warped products are studied in [3,14,16,22].
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4.1. Lorentzian warped products

In this section, we state some results about null and time-like geodesic completeness of
Lorentzian multiply warped products.

We now consider the non-space-like geodesic completeness of Lorentzian multiply
warped products of the forfl = (¢, d) x p; F1 X - -+ X p,, Fpy With metricg = —dP e
b2gp @ -+ @ b2gr,, Where—oo < ¢ < d < cc. Here, a space-time is said to be null
(respectively, time-like) geodesically incomplete if at least one future directed null (re-
spectively, time-like) geodesic cannot be extended to be defined or arbitrary negative and
positive values of an affine parameter. Since we are using the metfon (¢, d), the curve
y(t) = (¢, q) with g € F fixed and is a unit speed time-like geodes¥,(g) independent
of which warping function$1, ... , b,, are chosen.

Consequently, it > —oo ord < oo then (M, g) is time-like geodesically incompletely
for all possible functions warping functions, . .. , b,,. Moreover, ifc andd are both finite
and ify is any time-like geodesic i, thenL(y) < d — ¢ < oo. Thus ifc andd are finite,
all time-like geodesics are past and future incomplete (cf. [3]).

Lemma 4.1. M = (c,d) x p, F1 x - -+ x , F;y be a Lorentzian multiply warped product
with metricg = —dt? @ b2gp, ® --- ® b2, gp,, Where—oo < ¢ < d < oo. Also let
y =(, B1,...,Bm): I —> M be ageodesic in M. If there exist {1, ... ,m} and points
gj € Fjforall j e {1,...,m} — {i} such thaig; () = ¢;, for anyr € I, andﬂ}.(O) =0,
forall j € {1,... ,m}—{i},thenﬂ}(t) =O0forall j € {1,... ,m}—{i}andforany € I.

Proof. If y isageodesiciM,theng; = —2/(bioa)d(brow)/dt B foranyk € {1, ... , m}
by Proposition2.4.15 € {1, ... ,m}—{i},thenﬂ}’(O) =0, ﬂ} (0) =0and hencé} =0
satisfies both equations. Thus by the existence and the uniqueness of solutions of ordinary
differential equations, we have th&}(r) =0forallj e{l,...,m}— {i}. O

Clearly, ify = (o, B1, ..., Bn): I — M is a null (respectively, time-like or space-like)
geodesic inM such that there exist € {1,...,m} and pointsg; € F;, forall j €
{1,...,m} —{i} with 8;(z) = ¢;, foranyr e I, then it follows from Lemma 4.1 that is
null (respectively, time-like or space-like) incomplete M (g) if and only if («, 8;) is null
(respectively, time-like or space-like) incomplete(ia, d) x p, F;, —d? @ bl.zgﬁ.). Using
Lemma 4.1 and techniques for singly warped products (cf. [3,16,18]) we may establish the
following three results.

Theorem4.2. M = (c,d) x p, F1 x - -- x p, F, be a Lorentzian multiply warped product

with metricg = —df? @ b2gr, @ - - - ® b2 gF,, where—oco < ¢ < d < co. Then

1. if lim,_, .+ ["°bi(s) ds < oo for somewg € (c, d) and for some € {1,...,m} then
some future directed null geodesics are past incomplete andiyg)(s future directed
null geodesic past incomplete

2. if lim,_ 4~ f;o b;(s)ds < oo for some future for someg € (¢, d) and for some ¢
{1,...,m} then some future directed null geodesics are future incomplete and thus
(M, g) is future directed null geodesic future incomplete
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Theorem 4.3. M = (c, d) x p, F1 x -+ - X p,, F, be a Lorentzian multiply warped product

m

with metricg = —df? ® b2gp, @ - - ® b2 gF,,, Where—oo < ¢ < d < co. Then

1. if Iim,_>c+ftw°b,-(s)/,/1+bl?(s)ds < oo for somewy € (c,d) and for some e
{1,...,m} then some future directed time-like geodesic is past incomplete and thus
(M, g) is future directed time-like geodesic past incomplete

2. if lim,_ 4- flzo bi(s)/y/1+ b2(s)ds < oo for somewg € (c,d) and for some e
{1, ..., m} then some future directed time-like geodesic is future incomplete and thus
(M, g) is future directed time-like geodesic future incomplete.

Theorem4.4. M = (c, d) x p, F1 x -+ - X p,, F, be a Lorentzian multiply warped product

with metricg = —df? @ b2gp, @ - -- ® b2 gF,,, Where—oo < ¢ < d < co. Then

1. if lim,_ .+ /"°bi(s) ds < oo andb; is a bounded function ofr, wo) for somewq €
(¢, d) and forsomeé € {1, ..., m} then some future directed space-like geodesic is past
incomplete and thugM, g) is future directed space-like geodesic past incomplete

2. if lim,_ 4- fvj)o bi(s)ds < oo andb; is a bounded function ofwg, d) for somewg €
(c,d) and for some € {1,...,m} then some future directed space-like geodesic is
future incomplete and thu, g) is future directed space-like geodesic future incom-

plete.

Now, we will obtain some integral conditions to guarantee null, time-like and space-like
geodesic completeness of multiply warped space—times by using similar arguments in [16].
First, we will state the following result which is an extension of Lemma 3.1 of [16].

Lemma 4.5. M = (c,d) x p, F1 x --- xy,, F;y be a Lorentzian multiply warped product

with metricg = —dt® @ bngl ® - ®b2gr,, Where—co < ¢ < d < oo, also let
y = (o, B1, ..., Bm): [0,8) — M be a geodesic for somde> 0. If (F;, gF;) is complete
foranyi € {1, ..., m}, then the following conditions are equivalent

1. y is extendible as a geodesic pdst

2. « is continuously extendible &

3. «'[0, §) is in a compact subset of T(B).
4. «[0, $) is in a compact subset of B.

We will expressthelengthef ,i.e.,||o’|| interms ofD andc;, wherey = (a, B1, ... , Bn),
g(y'.y") = D and(b; o a)*gr, (B], B)) = ci, foranyi € {1, ... ,m}.

Lemma 4.6. M = (c,d) x p, F1 x -+ x , F;y be a Lorentzian multiply warped product

with metricg = —dt?> @ b2gp, @ --- ® b2 gF,, Where—oo < ¢ < d < oo, also let

y = («, B1,..., Bm): I — M be a future directed geodesic. Suppose that the spegd of

isD, (i.e, g(y’,y") = D).

1. If Iim,qdfflzo(—D + 31 1ci/b2(s))"Y2ds = oo for somewg € (c,d), theny is a
future complete geodesic.

2.1 lim, o+ ["°(=D + 31 1ci /b?(s)) Y2 ds = oo for somewp € (c,d), theny is a
past complete geodesic.
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Proof. We haveg(y’,y’) = D, i.e,D = —(&')? + 311 (b; o @)?gr, (B}, B}). By using
Remark 2.5 we obtain,
m m m m
D[ [hi o ) = (@)?] [ i 0 )® + (Z(b,- o a)’gr (B}, /3{)) [ J®io)?

i=1 i=1 i=1 i=1

=—@)?] [bica)®+ ) (bi ow)?--- (hi—1 0 @) ci(bir10)?

i=1 i=1
o (b o @)?.
Hence,
m 1/2
i
’ (- ! 2
lle' () ( D+,§b,?(s)) ()

Hence, the result follows from Lemmas 3.5 and 3.8 of [16] and Lemma 4.5. O

Now, we will introduce the following notation which will be useful in stating a number
of results.

Notation M = (c, d) x p, F1 % - - - X, F;y b€ a Lorentzian multiply warped product with
metricg = —dt2 @ bigr, ® - D b2 gF,, Where—oco < c <d < co.If B={b1, ..., by}
and for somé < {1, ..., m} and for some subsé¢b, ... , b} of B, then

k k
flbr,... b} =[]bi and hlb1,... 5] =) b5---b7 b7 bf.
i=1 i=1

Also, it is assumed that[b1] = 1, for anyb; € B.

By making use of Lemmas 3.5 and 3.8 of [16] and Lemma 4.6 and also considering
three different cases, i.@) = 0 for null, D = —1 for time-like andD = 1 for space-like
geodesics we obtain the following results.

Theorem 4.7. M = (c, d) x p, F1 X - - - X p,, F, b€ a Lorentzian multiply warped product

with metricg = —dt2 @ b2gp, @ - @ b2 g, , Where—oo < ¢ < d < co. Suppose that

(F;, gr;) iscomplete forany € {1,... ,m}andB = {by, ... , by} then

Lolimy g [y £lb1, .. Bi](s)/V/ b1, -+, bi](s) ds = oo for somewo € (c, d) and
foranyk e {1,...,m} and any subsefhs, ... , by} of B if and only if every future
directed null geodesic is future complete.

2. 0im, o+ [0 b1, ... . be](s)/Vhb1, ..., bi](s)ds = oo for somewp € (c,d) and
foranyk € {1,...,m} and any subsefb, ... , b;} of B if and only if every future
directed null geodesic is past complete.

Theorem 4.8. M = (c, d) x p, F1 X - -+ X p,, F, b€ a Lorentzian multiply warped product
with metricg = —dt2 @ b2gp, @ --- @ b2 g, , Where—oo < ¢ < d < oo. Suppose that
(F;, gr;) is complete forany € {1,... ,m} andB = {by, ... , by} then



298 B. Unal/Journal of Geometry and Physics 34 (2000) 287-301

Lolimy g [y £Iba. - Bil($)/ fIba, .. Bi]2(s) + hlb1, ..., Bi](s)ds = oo for
somewg € (c,d) and for anyk € {1,...,m} and any subsetby, ... , by} of B if
and only if every future directed time-like geodesic is future complete.

2. limy et f;" flb1, . Br1($)/ b1, .. br12(s) + hlb1, ..., Bil(s)ds = oo for
somewg € (¢, d) and for anyk € {1, ... ,m} and any subse€y, ... , b;} of B if and
only if every future directed time-like geodesic is past complete.

Theorem4.9. M = (c,d) x p, F1 x - -- x p, Fy, be a Lorentzian multiply warped product

with metricg = —dt? @ b2gp, @ --- ® b2 gF,, , Where—co < ¢ < d < co. Suppose that

(Fi, gr;) iscomplete forany € {1,... ,m}andB = {by, ... , by} then

1. Eitherlim,ﬁdfflzof[l;l, oo i)/ Albe, ... b ](s)ds =00 or  f[b1,... b
(s)/vh[b1, ..., b](s) is an unbounded function dwg, d) for somewg € (¢, d) and
foranyk € {1,...,m} and any subsetbs, ... , b} of B if any only if every future
directed space-like geodesic is future complete

2. Either lim,_, .+ f[wo flb1, ... . b J(s)/vVh[b1, ... ,bil(s)ds = oo or f[by,...,
br](s)/v/h[b1, ... , bc](s) is an unbounded function ofa, wo) for somewg € (c, d)
and for anyk € {1, ... ,m} and any subsdi, ... , b} of B if any only if every future
directed space-like geodesic is past complete

Corollary 4.10. M = (c, d) x p, F1 X - - - x 3, F;y be a Lorentzian multiply warped product
with metricg = —dt2 @ b2gp, @ --- @ b2 g, , Where—oo < ¢ < d < oco. Suppose that
(F;, gr;) is complete for any € {1, ... , m} then

1. If (M, g) is time-like complete, thef@d, g) is null complete.

2. If 0 < inf(b;) < supb;) < O,foranyi € {1,...,m}, then(M, g) is null complete iff

(M, g) is time-like complete
Proof. These follow from Theorems 4.7 and 4.8. O

Lemma4.11. LetM = B x , F1 x - - - x 3, F;, be a pseudo-Riemannian multiply warped
product with metrig = g ®b2gr, ®- - ® b2 gp, and alsole;: I — F; be a unit speed
geodesic of; for somei € {1,... ,m}andy = («, B1, ..., Bn): I — M be a curve in
M. If there exist pointg; € F;,forall j € {1, ... ,m} — {i} such thatg;(s) = ¢;, for any
s € I,theny = (o, B1, ..., Bn) IS @ pre-geodesic in M if and only if
/
VB (s) — (b; o a)(s) gradg (b;)(a(s)) = ZMO{/(A‘)
* (bi 0 a)(s)

forall s € I.

Proof. Note thaty = («, 81, ..., Bw) IS a pre-geodesic i if and only if there exists a
smooth functiom:: I — R such thatV,y'(s) = h(s)y'(s), forall s € I. Itis clear that
ﬁ}(s) =O0forallj € {1,...,m}—{i}andforanyw € I. By using thecovariant derivative
formulaswe get

(@'bi)(s)

V' () = VEd/ (s) = (bi o @) (s) gradg (bi) ((s)) + Zmﬁi (s)
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By projecting ontdlg, () (F;) we have 2a'b;)(s)/(b; o) (s) B} (s) = h(s)B;(s) this implies
thatz(s) = 2(a’b;)(s)/(b; o a)(s). Therefore the result follows by projecting the above
covariant derivative formulanto 7, ) (B). O

Theorem 4.12.LetM = B x , F1 x - - - X, F, be a Lorentzian multiply warped product

with metricg = gp @ b2gr, ® --- ® b2gr,,. If (M, g) is null, time-like or space-like
complete, thewF;, gr,) is a complete Riemannian manifold for ang {1, ..., m}.

Proof. (This result was first stated for singly Lorentzian warped products in [14] and an
alternative proof for singly Lorentzian warped products was given in [22].) Let ys &xB

and letX, € T,(B) be a time-like withgz (X ,, X ;) = —b?(p), for somei € {1,... ,m}.

Now we can show that one can find a smooth curvi, ¢) — B, wheree > 0 such that

(a'bi)(s)

Ve () = (bi 0 @)(s) gracy (b) (@(s) = 25— e

"(s), 0 =X, (3)
System (3) is an initial value problem then clearly the existence and uniqueness theorem
for ordinary differential equations gives the following result: there exists=a 0 and a
differentiable curvex: [0, ) — B satisfying system (3). Leg;: [0, K) — F; be a unit
speed maximally extended geodesic &ne co. LetL = K —¢/2 and se; = B;(t + L)
soBi:[—L,e/2) — F;. Thusp; is a unit speed geodesic and can be extendedte /2.

Sety () = (a(?), B1(t), ..., Bu(t)), whereg;(¢) = q;, for some pointg;; € F;, for all
jefl,...,m}—{i}and any € I, by Lemma 4.11, we have is a pre-geodesic with

(a'bi)(1)

Yy = hO@ (0 + B®).  where ht) = 2.

But 2(a’b;) () /(b; o o) must be bounded and smooth on the closed interval/[), hence
h(t) must be bounded and smooth on the closed interval/®). By converting to an affine
parameter (cf. [20]} via p, we get

t
0

NotiE:e thats = 0, i.e.,t = 0 corresponds tg(0) = («(0), B1(0), ..., Bn(0) =
(p, f1(0), ... , B (0)) andy’(0) = &'(0) + B;(0). Also

(' (0), y'(0) = gg(@(0), & (0) + b2(p)gr (BL(0), B (0)) = —bZ(p) + b?(p) = 0.

Hencey is null pre-geodesic of/. The affine parameter

t 3

= lim p(t) = lim [ (e/%rwdvyqg
50 t—>e/2p( ) t—>e/2‘/(\) ( ) du

must be finite,sp < oo. Becauséh is bounded on [0¢/2). Since we cannot extengl

to+ = €/2 then we cannot extend to r = ¢/2. This implies that we cannot extend

7(s) =y o p7Ls) = (@), Br(t(s)), ..., Bm(t(s))) to s = so. Thus the geodesic

7 =y o p~Lis not complete. O
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In contrast to the above showind’, gr) is complete, the corresponding foB, gg) is
much simpler.

Proposition 4.13. Let M = B x »,F1 x --- x p, F,;, be a Lorentzian multiply warped
product with metrig = g5 @b%gﬂ D-- ~€|9b,2ngFm. If (M, g)is null, time-like or space-like
complete, theB, gp) is either null, time-like or a space-like complete Lorentzian manifold,
respectively

Proof. Let « be an incomplete time-like (respectively, null, space-like) geodesig.in
Then foranyg € F,y = («, g) is an incomplete time-like (respectively, null, space-like)
geodesic o by Proposition 2.4. O

4.2. Riemannian warped products

In this section, we state some results about completeness of Riemannian multiply warped
products.

Theorem4.14.LetM = B xp, F1 x - - - x3,, F,, be a Riemannian multiply warped product
with metricg = gp ® bfgp1 ®--- D b,%,gpm. If (B, gp) and (F;, gr,) are all complete
Riemannian manifolds for any € {1, ... ,m} then (M, g) is a complete Riemannian
manifold

Proof. We use the metric completeness criterion from the Hopf-Rinow theorem in 5.21
[13]. NotefirstthatifX istangenttd/,i.e.,.X € L(B)theng(X, X) = gp(dn(X), dn(X)).
HenceL(y) > L(a) forany curve segmemt = (a, B1, ... , Bwn); hencel((p, q), (p’, q"))

> dg(p, p))forall (p, q), (p’,q") € M. This property implies that, ip,,, ¢,) is a Cauchy
sequence i, then(p,) is Cauchy inB. Since(B, gg) is complete p,, converges to some
point p € B. We can assume that the sequence lies in some compaktiseB; hence

b; > k; > 0onP forsomek; > 0,andany € {1, ..., m}. Then a variant of the argument
shows that/((p, ¢), (p'. ¢')) = min{k;}3> "\ 1dF, (¢, q") for all (p,q), (p'.q') € P x F.

Now (g,,) is Cauchy inF and thus converges; so the original sequence converges and M is
complete. O

Theorem 4.15. LetM = B x, F1 x - - - x,, F;, be a Riemannian multiply warped product
with metricg = g ® b%gpl DD b,zngFm. If (M, g) is a complete Riemannian manifold,
then(B, gp) and (F;, gr,) are complete Riemannian manifolds for ang {1, ... , m}.

Proof. Let (p,) be Cauchy inB. Then for a fixedy € F we have(p,, ¢q) is Cauchy in
M. Becausel((pn, q), (pm,q)) = dg(pn, pm)- Thus there is a poirlp, ¢) € M such that
lim(pn. q) = (p.¢). Then sincel((pn. q). (p.q)) = dg(pn, p) We have lin{p,) = p.
HenceB is complete. Now, suppose thgtis Cauchy inF; for an arbitraryi € {1, ..., m}
andg; are pointinF; foranyj € {1,...,m} — {i}, respectively. Then for a fixed points
p € B, we have thatp,¢}) = (p,q1, ... ,qi-1, 4%, qi+1, - - - » qm) iS Cauchy inM since
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d((p. 4,). (P, 43y)) = bi(p)dF,(q;. 4;,). Thus lim(p, ¢;) = (p. q) exists, wherdp, q) =
(P41, - . 4i~1.4i> gi+1, - - - »qm) @Ndg; € F;. This implies thatd((p., q,). (p.q)) =
bi(p)dr,(q;, qi). Therefore, limy" = g; and F; is complete for some, hence for any
iefl ..., m). O
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