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Abstract

In this paper, we first state covariant derivative formulas for multiply warped products and con-
sider the geodesic equations for these spaces. Then we state some basic facts about causality of
Lorentzian multiply products and study Cauchy surfaces and global hyperbolicity. Finally, we con-
sider null, time-like and space-like geodesic completeness of Lorentzian multiply products and
geodesic completeness of Riemannian multiply warped products. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

O’Neill and Bishop [7] introducedsingly warped productsor simply warped products
to construct Riemannian manifolds with negative sectional curvature. Later, it was pointed
out that many exact solutions toEinstein’s field equationcan be expressed in terms of
Lorentzian warped productsby Beem et al. [4]. Moreover, Beem and Ehrlich [3] proved that
causality and completeness of warped products can be related to causality and completeness
of components of warped products.Curvatureformulas of singly warped products in terms
of curvatures of components of warped products were explored by O’Neill [13] and he
also examinedRobertson–Walker, static, SchwarschildandKruskal space–timesas warped
products. Also, warped products were considered asRiemannian submersionsby Besse [6]
and he obtained some results for special cases.

In the present work, we studymultiply warped productsor multiwarped products. Before
we see a brief definition of multiply warped products, we describe the following type of
products. A Lorentzian warped product (M, g) of the formM = (c, d) × bF with the
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metric g = −dt2 ⊕ b2gF is a generalized Robertson–Walkerspace–time, where−∞ ≤
c < d ≤ ∞ andb: (c, d) → (0, ∞) is a smooth function. Generalized Robertson–Walker
space–times are considered as model space–times in relativity theory (cf. [3,11,13,21]).
Especially, in [18] some results about stability, geodesic completeness and geodesic con-
nectedness of generalized Robertson–Walker space–times were stated. Furthermore, in [21]
necessary and sufficient conditions for a generalized Robertson–Walker space–time to have
positive Ricci curvature on non-space-like tangent vectors and some conditions for them
to be either Ricci-flat or Einstein are proven. Also, in [21] some results for a generalized
Robertson–Walker space–time to have non-negative sectional curvature on time-like plane
sections are established and some applications to singularity theorems are given and also
some results for certain types of warped products to have constant scalar curvature are
stated.

In general,doubly warped productscan be considered as generalizations of singly warped
products. A doubly warped product (M, g) is a product manifold which is of the form
M =f B × bF with the metricg = f 2gB ⊕ b2gF whereb: B → (0, ∞) andf : F →
(0, ∞) are smooth maps. Beem and Powell [5] considered these products for Lorentzian
manifolds. Then Allison [1] consideredcausalityandglobal hyperbolicityof doubly warped
products. In [22], Cauchy surfaces in doubly warped products and global hyperbolicity
are considered. Then geodesic completeness of Lorentzian doubly warped products and
Riemannian doubly warped products are studied and necessary conditions are given for
generalized Robertson–Walker space–times with doubly warped product spacial parts to
be globally hyperbolic. Also ak-decaying condition is used to establish some results about
geodesic incompleteness of Riemannian doubly warped products, in addition to those, some
results are stated about Killing and conformal vector fields of doubly warped products.

One can also generalize singly warped products to multiply warped products. Briefly,
a multiply warped product (M, g) is a product manifold of the formM = B × b1F1 ×
b2F2 × · · · × bmFm with the metricg = gB ⊕ b2

1gF1 ⊕ b2
2gF2 ⊕ · · · ⊕ b2

mgFm , where for
eachi ∈ {1, . . . , m}, bi : B → (0, ∞) is smooth and (Fi, gFi

) is a pseudo-Riemannian
manifold.Covariant derivativesand curvatures of multiply warped products are given in
[2] for m = 2. In particular, whenB = (c, d) with the negative definite metricgB = −dt2,
the corresponding multiply warped productM = (c, d)×b1F1×b2F2×· · ·×bmFm with the
metricg = −dt2 ⊕ b2

1gF1 ⊕ b2
2gF2 ⊕ · · · ⊕ b2

mgFm is called a multiply warped space–time,
where for eachi ∈ {1, . . . , m}, (Fi, gFi

) is a Riemannian manifold and−∞ ≤ c < d ≤
∞. Geodesic equations and geodesic connectedness of multiply warped space–times were
studied by Flores and Sánchez [9] and they also noted that the class of multiply warped
space–times contains many well-known relativistic space–times.

There are various types of warped products in addition to the ones considered above
and some of these have proven useful in general relativity. Campbell [8] studied local
embeddings of pseudo-Riemannian manifolds in Ricci-flat pseudo-Riemannian manifolds.
His work was used to construct the local embedding in five-dimensional, Ricci-flat spaces
of four-dimensional space–times admitting a non-twisting, nullKilling vector field in [12]
and to show that general relativistic solutions can always be locally embedded in Ricci-flat
five-dimensional spaces in [17]. It can be easily observed that all these extensions are some
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mixed types of warped products. Also, in [15] some physically motivatedD-dimensional
solutions studied by Wesson and Ponce de Leon were extended to (D+1) dimensions and
again these extensions turn out to be various types of warped products.

In Section 3, we study thecausalstructures of multiply warped products. Then we also
investigateCauchy surfacestructures andglobal hyperbolicityof multiply warped products
and obtain generalizations of singly warped products results (cf. [3]).

In Section 4, we consider geodesic completeness of Lorentzian and Riemannian doubly
warped products. We examinenull geodesic completenessof Lorentzian multiply warped
products (M, g) of the formM = (c, d) × b1F1 × · · · × bmFm with metricg = −dt2 ⊕
b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞ andB = {b1, . . . , bm} by using

similar techniques in [16]. To do this we suppose that (Fi, gFi
) is a complete Riemannian

manifold for anyi ∈ {1, . . . , m} then we get relations between null geodesic completeness
of (M, g) and the divergence of limt→c+

∫ w0
t

(f [b̄1, . . . , b̄k](s)/
√

h[b̄1, . . . , b̄k](s)) ds and

lim t→d−
∫ t

w0
(f [b̄1, . . . , b̄k](s)/

√
h[b̄1, . . . , b̄k](s)) ds for somew0 ∈ (c, d) and anyk ∈

{1, . . . , m} and any subset{b̄1, . . . , b̄k} of B, where

f [b̄1, . . . , b̄k] =
k∏

i=1

b̄i and h[b̄1, . . . , b̄k] =
k∑

i=1

b̄2
1 · · · b̄2

i−1b̄
2
i+1 · · · b̄2

k .

Similarly, we also examinetime-like geodesic completenessof (M, g) and we obtain rela-
tions between time-like geodesic completeness of (M, g) and the divergence of limt→c+

∫ w0
t

(f [b̄1, . . . , b̄k](s)/
√

f [b̄1, . . . , b̄k]2(s) + h[b̄1, . . . , b̄k](s)) ds and limt→d−
∫ t

w0

(f [b̄1, . . . , b̄k](s)/
√

f [b̄1, . . . , b̄k]2(s) + h[b̄1, . . . , b̄k](s))ds for more somew0 ∈ (c, d)

and anyk ∈ {1, . . . , m} and any subset{b̄1, . . . , b̄k} of B. Finally, we consider space-like
geodesic completeness of (M, g) and obtain relations between space-like geodesic com-
pleteness (M, g) and the divergence of limt→c+

∫ w0
t

(f [b̄1, . . . , b̄k](s)/
√

h[b̄1, . . . , b̄k](s))

ds and limt→d−
∫ t

w0
(f [b̄1, . . . , b̄k](s)/

√
h[b̄1, . . . , b̄k](s)) ds or unboundedness of

f [b̄1, . . . , b̄k](s)/
√

h[b̄1, . . . , b̄k](s) on (w0, d) or (c, w0) for somew0 ∈ (c, d) and any
k ∈ {1, . . . , m} and any subset{b̄1, . . . , b̄k} of B.

Moreover, we extend some results about geodesic completeness of Lorentzian multiply
warped products from [14], i.e., when a Lorentzian multiply warped product (M, g) of
the formM = B × b1F1 × · · · × bmFm with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm is

null, time-like or space-like complete then (Fi, gFi
) is a complete Riemannian manifold

for any i ∈ {1, . . . , m} and in this case, (B, gB ) is null, time-like or space-like complete,
respectively.

After considering geodesic completeness of Lorentzian multiply warped products we
turn our attention to Riemannian multiply warped products (M, g) of the formM = B ×
b1F1 × · · · × bmFm with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . We proved that if (B, gB )

and (Fi, gFi
) are all complete Riemannian manifolds for anyi ∈ {1, . . . , m}, then (M, g)

is also complete and conversely, when (M, g) is complete then (B, gB ) and (Fi, gFi
) are

complete for anyi ∈ {1, . . . , m}.
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2. Preliminaries

Thoughout this work any manifoldM is assumed to be connected, Hausdorff, paracom-
pact and smooth. A pseudo-Riemannian manifold (M, g) is a smooth manifold with a metric
tensorg and a Lorentzian manifold (M, g) is a pseudo-Riemannian manifold with signature
(−, +, +, . . . , +).

Let (M, g) be a Lorentzian manifold. A non-zero tangent vectorXp ∈ Tp(M) is said to be
time-like (respectively, space-like or null) ifg(Xp, Xp) < 0 (respectively,g(Xp, Xp) > 0
or g(Xp, Xp) = 0).

A Lorentzian manifold (M, g) is called time-orientedby the vector fieldX, if X is
time-like at every point ofM. A time-oriented Lorentzian manifold (M, g) is called a
space–time.

Let p, q ∈ M. Thenp � q if there exists a smooth future directed time-like curve from
p to q andp ≤ q if there exists a smooth future directed non-space-like curve fromp

to q. The chronological futureI+(p) of p is the setI+(p) = {q ∈ M|p � q} and the
chronological pastI−(p) = {q ∈ M|q � p}. The causal futureJ+(p) of p is the set
J+(p) = {q ∈ M|p ≤ q} and the causal pastJ−(p) = {q ∈ M|q ≤ p}.

Now, we briefly state some causality conditions in order of increasing strength (cf. [3,11]).
If a space–time (M, g) contains no closed time-like curves then (M, g) is chronological.
A space–time with no closed non-space-like curves is called causal. An open setU in a
space–time is called causally convex if no non-space-like curve intersectsU in a discon-
nected set. Givenp ∈ M, the space–time (M, g) is called strongly causal atp if p has
arbitrarily small causally convex neighborhoods. A space–time is said to be a strongly
causal space–time if it is strongly causal at each point.

A space–time (M, g) is stably causal if there is a fineC0 neighborhoodU(g) of g in
Lor (M) such that eachg1 ∈ U(g) is causal. A continuous functionf : M → R is a
global time function iff is strictly increasing along each future directed time-like curve.
A space–time is stably causal if and only if it has a global time function. A strongly causal
space–time (M, g) is said to be globally hyperbolic if for each pair of pointsp, q ∈ M

the setJ+(p) ∩ J−(q) is compact. Globally hyperbolic space–times may be characterized
by using Cauchy surfaces. A subset ofM which every inextendible non-space-like curve
intersects exactly once is called a Cauchy surface. A space–time is globally hyperbolic if
and only if it has a Cauchy surface (cf. [10,11]). At this point we recall that in a globally
hyperbolic space–time any pair of causally related points may be joined by a non-space-like
geodesic segment of maximal length (cf. [19]).

Let (M, g) be a Lorentzian manifold. Givenp, q ∈ M, with p ≤ q, define�p,q as the
set of all future directed piecewise smooth non-space-like curvesγ : [0, 1] → M from p to
q, i.e.,γ (0) = p andγ (1) = q. TheLorentzian distanced: M ×M → R∪ {∞} is defined
as follows: letp, q ∈ M then

d(p, q) =
{

0 if q /∈ J+(p),

sup{Lg(γ )|γ ∈ �p,q if q ∈ J+(p),

whereLg(γ ) is theLorentzian arc lengthof γ .
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In arbitrary Lorentzian manifolds, a reverse triangle inequality holds. More explicitly,
if p ≤ q ≤ r thend(p, q) + d(q, r) ≤ d(p, r). In globally hyperbolic space–times, the
Lorentzian distance function is finite and continuous.

A smooth curveγ : I → M in an arbitrary pseudo-Riemannian manifold is said to be
a pre-geodesic if it can be reparametrized so that the repametriziation is a geodesic. A
parameters for a pre-geodesicγ is called an affine parameter ifγ ′′(s) = 0.

A smooth curveγ : (a, b) → M in an arbitrary pseudo-Riemannian manifold is inex-
tendible tot = b (respectively, tot = a) if the limt→b−γ (t) (respectively, limt→a+γ (t))

does not exist.
In a Riemannian (i.e., positive definite) manifold the Hopf–Rinow theorem (cf. [13])

states the equivalence of metric completeness and geodesic completeness.
The Lorentzian manifold (M, g) is time-like (respectively, null, space-like) complete if

all time-like (respectively, null, space-like) inextendible geodesics are complete (i.e., can
be defined on all ofR). A non-space-like incomplete space–time is called a geodesically
singular space–time (cf. [10]).

Here, we briefly explain the topology of warped products.
Let (B, gB ) and (Fi, gFi

) be r and si dimensional pseudo-Riemannian manifolds, re-
spectively, wherei ∈ {1, 2, . . . , m}. If F = F1 × F2 × · · · × Fm, thenM = B × F is an
n-dimensional pseudo-Riemannian manifold wheres = ∑m

i=1si andn = r + s.
Throughout this paper we use thenatural product coordinate systemon the product

manifoldB ×F . Let (p, q1, q2, . . . , qm) be a point inM. Then there arecoordinate charts
(U, x) and (Vi, yi) on B andFi , respectively, wherei ∈ {1, 2, . . . , m} such thatp ∈ B

andqi ∈ Fi . Then we can define a coordinate chart (W, z) on M such thatW is an open
subset inM contained inU × V1 × V2 × · · · × Vm and (p, q1, q2, . . . , qm) ∈ W then
for all (u, v1, v2, . . . , vm) in W, z(u, v) = (x(u), y1(v1)y2(v2), . . . , ym(vm)), whereπ :
B × F → B andσi : B × F → Fi and alsoσ : B × F → F are usual projection maps
wherei ∈ {1, 2, . . . , m}. Clearly, the set of all (W, z) defines an atlas onB × F .

Let φ: B → R ∈ D(B) then the lift ofφ to B × F is φ̃ = φ ◦ π ∈ D(B × F), where
D(B) is the set of all smooth real-valued functions onB.

Moreover, one can definelifts of vector fields as: letX ∈ X (B) then the lift ofX to
B × F is the vector fieldX̃ ∈ X (B × F) such thatdπ(X̃) = X anddσi(X̃) = 0 for any
i ∈ {1, 2, . . . , m}. Similarly, letVi ∈ X (Fi) then the lift ofVi to B × F is the vector field
Ṽi ∈ X (B × F) such thatdπ(Ṽi) = 0 anddσi(Ṽi) = Vi and alsodσj (Ṽi) = 0 for any
j ∈ {1, 2, . . . , m} − {i}. We will denote the set of all lifts of all vector fields ofB byL(B)

and the set of all lifts of all vector fields ofFi byL(Fi) for anyi ∈ {1, 2, . . . , m}. Now we
are ready to define multiply warped products.

Definition 2.1. Let (B, gB ) and (Fi, gFi
) be pseudo-Riemannian manifolds and also let

bi : B → (0, ∞) be smooth functions for anyi ∈ {1, 2, . . . , m}. The multiply warped
product is the product manifoldB × F1 × F2 × · · · × Fm furnished with the metric tensor
g = gB ⊕ b2

1gF1 ⊕ b2
2gF2 ⊕ · · · ⊕ b2

mgFm defined by

g = π∗(gB) ⊕ (bi ◦ π)2σ ∗
1 (gF1) ⊕ · · · ⊕ (bm ◦ π)2σ ∗

m(gFm). (1)
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The functionsbi : B → (0, ∞) are called warping functions for anyi ∈ {1, 2, . . . , m}.
If m = 1, then we obtain a singly warped product. If allbi ≡ 1, then we have a product
manifold. If (B, gB ) and (Fi, gFi

) are all Riemannian manifolds, then (B × b1F1 × b2F2 ×
· · · × bmFm, gB ⊕ b2

1gF1 ⊕ b2
2gF2 ⊕ · · · ⊕ b2

mgFm ) is also a Riemannian manifold. We call
(B × b1F1 × b2F2 × · · · × bmFm, gB ⊕ b2

1gF1 ⊕ b2
2gF2 ⊕ · · · ⊕ b2

mgFm ) Lorentzian doubly
warped product if (Fi, gFi

) are all Riemannian and either(B, gB) is Lorentzian or else
(B, gB) is a one-dimensional manifold with anegative definitemetric−dt2.

In [2], metric components, covariant derivatives, Riemannian curvature, Ricci curvature
andscalar curvaturesof multiply warped products are studied form = 2. We will state the
covariant derivative formulas for multiply warped products. Note that the these formulas
are proven in [2] form = 2.

Proposition 2.2. Let M = B × b1F1 × · · · × bmFm be a pseudo-Riemannian multiply
warped product with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm also letX, Y ∈ L(B) and

V ∈ L(Fi), W ∈ L(Fj ). Then

1. ∇XY = (∇̃B
XY ),

2. ∇XV = ∇V X = X(bi)

bi

V ,

3. ∇V W =
{

0 if i 6= j,

(
˜∇Fi

V W) − (g(V, W)/bi) gradB(bi) if i = j.

By using the above result, it is easy to obtain the following generalizations of results [13]
for singly warped products.

Proposition 2.3. Let M = B × b1F1 × · · · × bmFm be a pseudo-Riemannian multiply
warped product with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . Then

1. The leavesB × {q} and the fibers{p} × F of the multiply warped product are totally
umbilic.

2. The leafB × {q} is totally geodesic, and the fiber{p} × F is totally geodesic if
gradB(bi)|p = 0 for anyi ∈ {1, 2, . . . , m}.

Now, we will state the geodesic equations for multiply warped products. The version
of this fact for singly warped products and doubly warped products are well known (cf.
[13,21]).

Proposition 2.4. Let M = B × b1F1 × · · · × bmFm be a pseudo-Riemannian multiply
warped product with metricg = gB ⊕ b2

1gF1 ⊕· · ·⊕ b2
mgFm . Also letγ = (α, β1, . . . , βm)

be a curve in M defined on some intervalI ⊆ R. Thenγ = (α, β1, . . . , βm) is a geodesic
in M if and only if for anyt ∈ I ,

1. α′′ =
m∑

i=1

(bi ◦ α)gFi
(β ′

i , β
′
i ) gradB(bi).
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2. β ′′
i = −2

(bi ◦ α)

d(bi ◦ α)

dt
β ′

i , for any i ∈ {1, 2, . . . , m}.

Remark 2.5. LetM = B × b1F1 × . . . × bmFm be a pseudo-Riemannian multiply warped
product with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . Also letγ = (α, β1, . . . , βm) be a

curve in M defined on some intervalI ⊆ R. If γ = (α, β1, . . . , βm) is a geodesic in M,
then
1. βi : I → Fi is a pre-geodesic inFi for anyi ∈ {1, 2, . . . , m}.
2. (bi ◦ α)4gFi

(β ′
i , β

′
i ) ≡ ci for anyi ∈ {1, 2, . . . , m}.

3. α is a constant if and only if there exists a points ∈ I such thatα′(s) = 0 andci = 0 for
anyi ∈ {1, 2, . . . , m} or α′(s) = 0 and gradB(bi)(α(s)) = 0 for anyi ∈ {1, . . . , m}.

4. βi is constant for somei ∈ {1, . . . , m} if and only ifci = 0.

3. Causality of multiply warped products

In this section, we briefly recallcausal structures of multiply warped productsand state
some results aboutglobal hyperbolicityof multiply warped products. All the results can
be proven by using the similar arguments to prove the analogues of these results for singly
warped products (cf. [3]).

3.1. Causality

In this section, we will generalize some basic facts about causality of Lorentzian singly
warped products to Lorentzian multiply warped products (cf. [3]).

Let M = B × b1F1 × · · · × bmFm be a Lorentzian multiply warped product with metric
g = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . Then we have,

1. If (p, q) ∈ M thendπ(p,q): T(p,q)(B × F) → Tp(B) maps non-space-like vectors
of T(p,q)(B × F) to non-space-like vectors ofTp(B) and π : B × F → B maps
non-space-like curves ofB × F to non-space-like curves ofB.

2. The mapπ : B × F → B is length non-decreasing on non-space-like curves ofB × F .
3. (M, g) is time-orientable if and only if(B, gB) is time-orientable (ifr ≥ 2) or (B, gB)

is a one-dimensional manifold with a negative definite metric.
4. If q is a point inF then each leaveσ−1(q) = B × {q} has the same chronology and

causality as(B, gB).
Suppose that(p1, q1), (p2, q2), (p1, q), and(p2, q) are points inM then
1. if (p1, q1) � (p2, q2) thenp1 � p2,
2. if (p1, q1) ≤ (p2, q2) thenp1 ≤ p2,
3. if p1 � p2 then(p1, q) � (p2, q),
4. if p1 ≤ p2 then(p1, q) ≤ (p2, q).
By using the similar arguments in [3], we get the following.

Theorem 3.1. LetM = (c, d)×b1F1×· · ·×bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. Then(M, g)
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is stably causal and consequently strongly causal, distinguishing, causal and chronolo-
gical.

Theorem 3.2. LetM = B × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . Then

1. (M, g) is causal (respectively, chronological) if and only if the space–time(B, gB) is
causal (respectively, chronological).

2. (M, g) is strongly causal (respectively, stably causal) if and only if the space–time
(B, gB) is strongly causal (respectively, stably causal).

Note that ifB is diffeomorphic toS1, thenS1 × b1F1 × · · · × bmFm is never chronolo-
gical.

3.2. Global hyperbolicity

In this section, we will generalize some basic facts about global hyperbolicity of Lorentzian
singly warped product to Lorentzian multiply warped products (cf. [3]).

Theorem 3.3. LetM = B × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = gB ⊕ b2

1gF1 ⊕· · ·⊕ b2
mgFm . Then(M, g) is globally hyperbolic if and only

if
1. (B, gB) is globally hyperbolic and
2. (Fi, gFi

) is complete for anyi ∈ {1, . . . , m}.

Corollary 3.4. Let M = (c, d) × b1F1 × · · · × bmFm is a Lorentzian multiply warped
product with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. Then

(M, g) is globally hyperbolic if and only if(Fi, gFi
) is complete for anyi ∈ {1, . . . , m}.

Now, we will give the following result about Cauchy surfaces in multiply warped
products.

Theorem 3.5. LetM = B × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = gB ⊕b2

1gF1 ⊕· · ·⊕b2
mgFm . If (Fi, gFi

) is complete for anyi ∈ {1, . . . , m},
then
1. if B = (c, d) for −∞ ≤ c < d ≤ ∞ is given the negative definite metric−dt2 then

{p} × F is a Cauchy surface of(M, g) for everyp ∈ B,
2. if (B, gB) is a globally hyperbolic space–time with a Cauchy surfaceSB thenSB × F

is a Cauchy surface of(M, g).

4. Completeness of multiply warped products

In this section, we obtain some results about geodesic completeness of Lorentzian and
Riemannian warped products. Analogues of these results for both Lorentzian and Rieman-
nian singly and doubly warped products are studied in [3,14,16,22].
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4.1. Lorentzian warped products

In this section, we state some results about null and time-like geodesic completeness of
Lorentzian multiply warped products.

We now consider the non-space-like geodesic completeness of Lorentzian multiply
warped products of the formM = (c, d) × b1F1 × · · · × bmFm with metricg = −dt2 ⊕
b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. Here, a space–time is said to be null

(respectively, time-like) geodesically incomplete if at least one future directed null (re-
spectively, time-like) geodesic cannot be extended to be defined or arbitrary negative and
positive values of an affine parameter. Since we are using the metric−dt2 on(c, d), the curve
γ (t) = (t, q) with q ∈ F fixed and is a unit speed time-like geodesic (M, g) independent
of which warping functionsb1, . . . , bm are chosen.

Consequently, ifc > −∞ or d < ∞ then (M, g) is time-like geodesically incompletely
for all possible functions warping functionsb1, . . . , bm. Moreover, ifc andd are both finite
and ifγ is any time-like geodesic inM, thenL(γ ) ≤ d − c < ∞. Thus ifc andd are finite,
all time-like geodesics are past and future incomplete (cf. [3]).

Lemma 4.1. M = (c, d) × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. Also let

γ = (α, β1, . . . , βm): I → M be a geodesic in M. If there existi ∈ {1, . . . , m} and points
qj ∈ Fj for all j ∈ {1, . . . , m} − {i} such thatβj (t) = qj , for any t ∈ I , andβ ′

j (0) = 0,
for all j ∈ {1, . . . , m}− {i}, thenβ ′

j (t) = 0 for all j ∈ {1, . . . , m}− {i} and for anyt ∈ I .

Proof. If γ is a geodesic inM, thenβ ′′
k = −2/(bk◦α)d(bk◦α)/dt β ′

k for anyk ∈ {1, . . . , m}
by Proposition 2.4. Ifj ∈ {1, . . . , m}−{i}, thenβ ′′

j (0) = 0, β ′
j (0) = 0 and henceβ ′

j (t) ≡ 0
satisfies both equations. Thus by the existence and the uniqueness of solutions of ordinary
differential equations, we have thatβ ′

j (t) ≡ 0 for all j ∈ {1, . . . , m} − {i}. �

Clearly, if γ = (α, β1, . . . , βm): I → M is a null (respectively, time-like or space-like)
geodesic inM such that there existi ∈ {1, . . . , m} and pointsqj ∈ Fj , for all j ∈
{1, . . . , m} − {i} with βj (t) = qj , for anyt ∈ I , then it follows from Lemma 4.1 thatγ is
null (respectively, time-like or space-like) incomplete in (M, g) if and only if (α, βi) is null
(respectively, time-like or space-like) incomplete in((c, d) × bi

Fi, −dt2 ⊕ b2
i gFi

). Using
Lemma 4.1 and techniques for singly warped products (cf. [3,16,18]) we may establish the
following three results.

Theorem 4.2. M = (c, d) × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm, where−∞ ≤ c < d ≤ ∞. Then

1. if lim t→c+
∫ w0
t

bi(s) ds < ∞ for somew0 ∈ (c, d) and for somei ∈ {1, . . . , m} then
some future directed null geodesics are past incomplete and thus (M, g) is future directed
null geodesic past incomplete,

2. if lim t→d−
∫ t

w0
bi(s) ds < ∞ for some future for somew0 ∈ (c, d) and for somei ∈

{1, . . . , m} then some future directed null geodesics are future incomplete and thus
(M, g) is future directed null geodesic future incomplete.
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Theorem 4.3. M = (c, d) × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. Then

1. if lim t→c+
∫ w0
t

bi(s)/

√
1 + b2

i (s) ds < ∞ for somew0 ∈ (c, d) and for somei ∈
{1, . . . , m} then some future directed time-like geodesic is past incomplete and thus
(M, g) is future directed time-like geodesic past incomplete,

2. if lim t→d−
∫ t

w0
bi(s)/

√
1 + b2

i (s) ds < ∞ for somew0 ∈ (c, d) and for somei ∈
{1, . . . , m} then some future directed time-like geodesic is future incomplete and thus
(M, g) is future directed time-like geodesic future incomplete.

Theorem 4.4. M = (c, d) × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. Then

1. if lim t→c+
∫ w0
t

bi(s) ds < ∞ andbi is a bounded function on(c, w0) for somew0 ∈
(c, d) and for somei ∈ {1, . . . , m} then some future directed space-like geodesic is past
incomplete and thus(M, g) is future directed space-like geodesic past incomplete,

2. if lim t→d−
∫ t

w0
bi(s) ds < ∞ andbi is a bounded function on(w0, d) for somew0 ∈

(c, d) and for somei ∈ {1, . . . , m} then some future directed space-like geodesic is
future incomplete and thus(M, g) is future directed space-like geodesic future incom-
plete.

Now, we will obtain some integral conditions to guarantee null, time-like and space-like
geodesic completeness of multiply warped space–times by using similar arguments in [16].
First, we will state the following result which is an extension of Lemma 3.1 of [16].

Lemma 4.5. M = (c, d) × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞, also let

γ = (α, β1, . . . , βm): [0, δ) → M be a geodesic for someδ > 0. If (Fi, gFi
) is complete

for anyi ∈ {1, . . . , m}, then the following conditions are equivalent
1. γ is extendible as a geodesic pastδ.
2. α is continuously extendible toδ.
3. α′[0, δ) is in a compact subset of T(B).
4. α[0, δ) is in a compact subset of B.

We will express the length ofα′, i.e.,||α′|| in terms ofD andci , whereγ = (α, β1, . . . , βm),

g(γ ′, γ ′) = D and(bi ◦ α)4gFi
(β ′

i , β
′
i ) = ci , for anyi ∈ {1, . . . , m}.

Lemma 4.6. M = (c, d) × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞, also let

γ = (α, β1, . . . , βm): I → M be a future directed geodesic. Suppose that the speed ofγ

is D, (i.e., g(γ ′, γ ′) = D).
1. If lim t→d−

∫ t

w0
(−D + ∑m

i=1ci/b
2
i (s))

−1/2 ds = ∞ for somew0 ∈ (c, d), thenγ is a
future complete geodesic.

2. If lim t→c+
∫ w0
t

(−D + ∑m
i=1ci/b

2
i (s))

−1/2 ds = ∞ for somew0 ∈ (c, d), thenγ is a
past complete geodesic.
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Proof. We haveg(γ ′, γ ′) = D, i.e.,D = −(α′)2 +∑m
i=1(bi ◦ α)2gFi

(β ′
i , β

′
i ). By using

Remark 2.5 we obtain,

D

m∏
i=1

(bi ◦ α)2 = (α′)2
m∏

i=1

(bi ◦ α)2 +
(

m∑
i=1

(bi ◦ α)2gFi
(β ′

i , β
′
i )

)
m∏

i=1

(bi ◦ α)2

= −(α′)2
m∏

i=1

(bi ◦ α)2 +
m∑

i=1

(bi ◦ α)2 · · · (bi−1 ◦ α)2ci(bi+1 ◦ α)2

· · · (bm ◦ α)2.

Hence,

‖α′(s)‖ =
(

−D +
m∑

i=1

ci

b2
i (s)

)1/2

(2)

Hence, the result follows from Lemmas 3.5 and 3.8 of [16] and Lemma 4.5. �

Now, we will introduce the following notation which will be useful in stating a number
of results.

Notation. M = (c, d)×b1F1×· · ·×bmFm be a Lorentzian multiply warped product with
metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. If B = {b1, . . . , bm}

and for somek ∈ {1, . . . , m} and for some subset{b̄1, . . . , b̄k} of B, then

f [b̄1, . . . , b̄k] =
k∏

i=1

b̄i and h[b̄1, . . . , b̄k] =
k∑

i=1

b̄2
1 · · · b̄2

i−1b̄
2
i+1 · · · b̄2

k .

Also, it is assumed thath[b̄1] = 1, for anyb̄1 ∈ B.
By making use of Lemmas 3.5 and 3.8 of [16] and Lemma 4.6 and also considering

three different cases, i.e.,D = 0 for null, D = −1 for time-like andD = 1 for space-like
geodesics we obtain the following results.

Theorem 4.7. M = (c, d) × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. Suppose that

(Fi, gFi
) is complete for anyi ∈ {1, . . . , m} andB = {b1, . . . , bm} then

1. limt→d−
∫ t

w0
f [b̄1, . . . , b̄k](s)/

√
h[b̄1, · · · , b̄k](s) ds = ∞ for somew0 ∈ (c, d) and

for any k ∈ {1, . . . , m} and any subset{b̄1, . . . , b̄k} of B if and only if every future
directed null geodesic is future complete.

2. limt→c+
∫ w0
t

f [b̄1, . . . , b̄k](s)/
√

h[b̄1, . . . , b̄k](s) ds = ∞ for somew0 ∈ (c, d) and
for any k ∈ {1, . . . , m} and any subset{b̄1, . . . , b̄k} of B if and only if every future
directed null geodesic is past complete.

Theorem 4.8. M = (c, d) × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. Suppose that

(Fi, gFi
) is complete for anyi ∈ {1, . . . , m} andB = {b1, . . . , bm} then



298 B. Ünal / Journal of Geometry and Physics 34 (2000) 287–301

1. limt→d−
∫ t

w0
f [b̄1, . . . , b̄k](s)/

√
f [b̄1, . . . , b̄k]2(s) + h[b̄1, . . . , b̄k](s) ds = ∞ for

somew0 ∈ (c, d) and for anyk ∈ {1, . . . , m} and any subset{b̄1, . . . , b̄k} of B if
and only if every future directed time-like geodesic is future complete.

2. limt→c+
∫ w0
t

f [b̄1, . . . , b̄k](s)/
√

f [b̄1, . . . , b̄k]2(s) + h[b̄1, . . . , b̄k](s) ds = ∞ for
somew0 ∈ (c, d) and for anyk ∈ {1, . . . , m} and any subset{b̄1, . . . , b̄k} of B if and
only if every future directed time-like geodesic is past complete.

Theorem 4.9. M = (c, d) × b1F1 × · · · × bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. Suppose that

(Fi, gFi
) is complete for anyi ∈ {1, . . . , m} andB = {b1, . . . , bm} then

1. Either lim t→d−
∫ t

w0
f [b̄1, . . . , b̄k](s)/

√
h[b̄1, . . . , b̄k](s) ds = ∞ or f [b̄1, . . . , b̄k]

(s)/
√

h[b̄1, . . . , b̄k](s) is an unbounded function on(w0, d) for somew0 ∈ (c, d) and
for any k ∈ {1, . . . , m} and any subset{b̄1, . . . , b̄k} of B if any only if every future
directed space-like geodesic is future complete.

2. Either lim t→c+
∫ w0
t

f [b̄1, . . . , b̄k](s)/
√

h[b̄1, . . . , b̄k](s) ds = ∞ or f [b̄1, . . . ,

b̄k](s)/
√

h[b̄1, . . . , b̄k](s) is an unbounded function on(c, w0) for somew0 ∈ (c, d)

and for anyk ∈ {1, . . . , m} and any subset{b̄1, . . . , b̄k} ofB if any only if every future
directed space-like geodesic is past complete.

Corollary 4.10. M = (c, d)× b1F1×· · ·× bmFm be a Lorentzian multiply warped product
with metricg = −dt2 ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm , where−∞ ≤ c < d ≤ ∞. Suppose that

(Fi, gFi
) is complete for anyi ∈ {1, . . . , m} then

1. If (M, g) is time-like complete, then(M, g) is null complete.
2. If 0 < inf (bi) < sup(bi) < 0, for any i ∈ {1, . . . , m}, then(M, g) is null complete iff

(M, g) is time-like complete.

Proof. These follow from Theorems 4.7 and 4.8. �

Lemma 4.11. LetM = B × b1F1 × · · · × bmFm be a pseudo-Riemannian multiply warped
product with metricg = gB ⊕b2

1gF1 ⊕· · ·⊕b2
mgFm and also letβi : I → Fi be a unit speed

geodesic ofFi for somei ∈ {1, . . . , m} andγ = (α, β1, . . . , βm): I → M be a curve in
M. If there exist pointsqj ∈ Fj , for all j ∈ {1, . . . , m} − {i} such thatβj (s) = qj , for any
s ∈ I , thenγ = (α, β1, . . . , βm) is a pre-geodesic in M if and only if

∇B
α′α′(s) − (bi ◦ α)(s) gradB(bi)(α(s)) = 2

(α′bi)(s)

(bi ◦ α)(s)
α′(s)

for all s ∈ I .

Proof. Note thatγ = (α, β1, . . . , βm) is a pre-geodesic inM if and only if there exists a
smooth functionh: I → R such that∇γ ′γ ′(s) = h(s)γ ′(s), for all s ∈ I . It is clear that
β ′

j (s) = 0 for all j ∈ {1, . . . , m}− {i} and for anys ∈ I . By using thecovariant derivative
formulaswe get

∇γ ′γ ′(s) = ∇B
α′α′(s) − (bi ◦ α)(s) gradB(bi)(α(s)) + 2

(α′bi)(s)

(bi ◦ α)(s)
β ′

i (s)
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By projecting ontoTβi(s)(Fi) we have 2(α′bi)(s)/(bi ◦α)(s)β ′
i (s) = h(s)β ′

i (s) this implies
thath(s) = 2(α′bi)(s)/(bi ◦ α)(s). Therefore the result follows by projecting the above
covariant derivative formulaontoTα(s)(B). �

Theorem 4.12. LetM = B × b1F1 ×· · ·× bmFm be a Lorentzian multiply warped product
with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . If (M, g) is null, time-like or space-like

complete, then(Fi, gFi
) is a complete Riemannian manifold for anyi ∈ {1, . . . , m}.

Proof. (This result was first stated for singly Lorentzian warped products in [14] and an
alternative proof for singly Lorentzian warped products was given in [22].) Let us fixp ∈ B

and letXp ∈ Tp(B) be a time-like withgB(Xp, Xp) = −b2
i (p), for somei ∈ {1, . . . , m}.

Now we can show that one can find a smooth curveα: [0, ε) → B, whereε > 0 such that

∇B
α′α′(s) − (bi ◦ α)(s) gradB(bi)(α(s)) = 2

(α′bi)(s)

(bi ◦ α)(s)
α′(s), α′(0) = Xp. (3)

System (3) is an initial value problem then clearly the existence and uniqueness theorem
for ordinary differential equations gives the following result: there exists aε > 0 and a
differentiable curveα: [0, ε) → B satisfying system (3). Let̃βi : [0, K) → Fi be a unit
speed maximally extended geodesic andK < ∞. LetL = K − ε/2 and setβi = β̃i (t +L)

soβi : [−L, ε/2) → Fi . Thusβi is a unit speed geodesic and can be extended tot = ε/2.
Setγ (t) = (α(t), β1(t), . . . , βm(t)), whereβj (t) = qj , for some pointsqj ∈ Fj , for all
j ∈ {1, . . . , m} − {i} and anyt ∈ I , by Lemma 4.11, we haveγ is a pre-geodesic with

∇γ ′γ ′(t) = h(t)(α′(t) + β ′
i (t)), where h(t) = 2

(α′bi)(t)

(bi ◦ α)
.

But 2(α′bi)(t)/(bi ◦ α) must be bounded and smooth on the closed interval [0, ε/2], hence
h(t) must be bounded and smooth on the closed interval [0, ε/2). By converting to an affine
parameter (cf. [20])s via p, we get

s = p(t) =
∫ t

0
(e
∫

0uh(v) dv) du.

Notice thats = 0, i.e., t = 0 corresponds toγ (0) = (α(0), β1(0), . . . , βm(0)) =
(p, β̃1(0), . . . , β̃m(0)) andγ ′(0) = α′(0) + β ′

i (0). Also

g(γ ′(0), γ ′(0)) = gB(α′(0), α′(0)) + b2
i (p)gF (β ′

i (0), β ′
i (0)) = −b2

i (p) + b2
i (p) = 0.

Henceγ is null pre-geodesic ofM. The affine parameter

s0 = lim
t→ε/2

p(t) = lim
t→ε/2

∫ t

0
(e
∫

0uh(v) dv) du

must be finite,s0 < ∞. Becauseh is bounded on [0, ε/2). Since we cannot extendβi

to t = ε/2 then we cannot extendγ to t = ε/2. This implies that we cannot extend
γ̃ (s) = γ ◦ p−1(s) = (α(t (s)), β1(t (s)), . . . , βm(t (s))) to s = s0. Thus the geodesic
γ̃ = γ ◦ p−1 is not complete. �
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In contrast to the above showing(F, gF ) is complete, the corresponding for(B, gB) is
much simpler.

Proposition 4.13. Let M = B × b1F1 × · · · × bmFm be a Lorentzian multiply warped
product with metricg = gB ⊕b2

1gF1 ⊕· · ·⊕b2
mgFm . If (M, g) is null, time-like or space-like

complete, then(B, gB) is either null, time-like or a space-like complete Lorentzian manifold,
respectively.

Proof. Let α be an incomplete time-like (respectively, null, space-like) geodesic inB.
Then for anyq ∈ F, γ = (α, q) is an incomplete time-like (respectively, null, space-like)
geodesic ofM by Proposition 2.4. �

4.2. Riemannian warped products

In this section, we state some results about completeness of Riemannian multiply warped
products.

Theorem 4.14. LetM = B×b1F1×· · ·×bmFm be a Riemannian multiply warped product
with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . If (B, gB) and (Fi, gFi

) are all complete
Riemannian manifolds for anyi ∈ {1, . . . , m} then (M, g) is a complete Riemannian
manifold.

Proof. We use the metric completeness criterion from the Hopf–Rinow theorem in 5.21
[13]. Note first that ifX is tangent toM, i.e.,X ∈ L(B) theng(X, X) = gB(dπ(X), dπ(X)).
Hence,L(γ ) ≥ L(α) for any curve segmentγ = (α, β1, . . . , βm); henced((p, q), (p′, q ′))
≥ dB(p, p′) for all (p, q), (p′, q ′) ∈ M. This property implies that, if(pn, qn) is a Cauchy
sequence inM, then(pn) is Cauchy inB. Since(B, gB) is complete,pn converges to some
point p ∈ B. We can assume that the sequence lies in some compact setP in B; hence
bi ≥ ki > 0 onP for someki > 0, and anyi ∈ {1, . . . , m}. Then a variant of the argument
shows thatd((p, q), (p′, q ′)) ≥ min{ki}

∑m
i=1dFi

(q, q ′) for all (p, q), (p′, q ′) ∈ P × F .
Now (qn) is Cauchy inF and thus converges; so the original sequence converges and M is
complete. �

Theorem 4.15. LetM = B×b1F1×· · ·×bmFm be a Riemannian multiply warped product
with metricg = gB ⊕ b2

1gF1 ⊕ · · · ⊕ b2
mgFm . If (M, g) is a complete Riemannian manifold,

then(B, gB) and(Fi, gFi
) are complete Riemannian manifolds for anyi ∈ {1, . . . , m}.

Proof. Let (pn) be Cauchy inB. Then for a fixedq ∈ F we have(pn, q) is Cauchy in
M. Becaused((pn, q), (pm, q)) = dB(pn, pm). Thus there is a point(p, q) ∈ M such that
lim(pn, q) = (p, q). Then sinced((pn, q), (p, q)) = dB(pn, p) we have lim(pn) = p.
HenceB is complete. Now, suppose thatqi

n is Cauchy inFi for an arbitraryi ∈ {1, . . . , m}
andqj are point inFi for anyj ∈ {1, . . . , m} − {i}, respectively. Then for a fixed points
p ∈ B, we have that(p, qi

n) = (p, q1, . . . , qi−1, q
i
n, qi+1, . . . , qm) is Cauchy inM since
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d((p, qi
n), (p, qi

m)) = bi(p)dFi
(qi

n, q
i
m). Thus lim(p, qi

n) = (p, q) exists, where(p, q) =
(p, q1, . . . , qi−1, qi, qi+1, . . . , qm) andqi ∈ Fi . This implies thatd((p, qi

n), (p, q)) =
bi(p)dFi

(qi
n, qi). Therefore, limqn

i = qi andFi is complete for somei, hence for any
i ∈ {1, . . . , m}. �
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